
12 – Biomedical Text Mining
André Lamúrias

Biomedical Text Mining

MEDLINE/PubMedClinicalTrials.GovWIPO

Databases and ontologies 3

Text Mining

● Extract high quality

information from text

● Evaluation using gold

standards

● Techniques

○ Rule based

○ Machine learning

○ Deep Learning

Source: https://www.ontotext.com/text-mining-graph-databases-work-well-together/

4

Recent developments in NLP

• 2013 – 2016: Word2vec/GloVe –
word embeddings

• 2017 – 2019:
Attention/Transformers/ELMo/BERT

• 2019 – ?: *BERT/GPT/LLMs

https://jalammar.github.io/illustrated-bert/ (2018)

https://jalammar.github.io/illustrated-bert/

Identifying Relevant information
- Entities:

- Genes,

microRNAs,

events, organs,

disease,
tools/techniques

CFTR - Gene ID:1080, P13569

miR-101 - Gene ID: 406893, miRBase MI0000103

- Database IDs

- Entrez, UniProt,
gene ontology,
miRBase

- Relations

- Between genes,
miRNAs, TFs, etc

(FOXA, C/EBP, miR-101,145,384) -> regulate -> CFTR

6

Pipeline example

Named entity recognition (NER)

- Identify tokens that refer to entities of interest

- Entity types for biology: gene, chemical, disease, species

- Entities can be used to index documents, extract relations, link to external databases and
ontologies

- No universal rules due to nomenclature variability and other factors

Deep learning/Transformer Models

- Pretrained language
model generates
contextual word
embeddings

- Classification head

9

http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

10

Entity Linking (EL)

EL using deep learning

- Train vector representations of entity
and concepts using BERT:
- "gad" and "benzos" - use contextual

representations
- Concepts: use label and description

- Calculate score between each entity
mention and each concept and choose
concept with maximum score

score("gad", "generalised anxiety disorder
SCTID: 21897009") = 0.8

score("gad", "Glutamate decarboxylase
SCTID: 41465008") = 0.1

11

Basaldella, Marco, et al. "COMETA: A Corpus for Medical Entity Linking in
the Social Media." arXiv preprint arXiv:2010.03295 (2020).

Relation extraction (RE)

- For each two entities in a sentence, classify if a
relation is described between them

- However the relation described may be between
more than 2 entities and across various
sentences

- More complex than NER, more difficult to get
data

- Examples: between chemicals (advice,
mechanism, effect), temporal, protein-protein,
binding

Relation Extraction

Soares, Livio Baldini, et al. "Matching the Blanks: Distributional Similarity for Relation Learning." Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics. 2019.

Text mining tasks

- NER: Named Entity Recognition

- Entity Linking/Normalization

- RE: Relation Extraction

- ---------------

- QA: Question answering

- Sentiment analysis

- Topic modeling

- Summarization

Weissman, Gary E., et al. "Construct validity of six sentiment analysis methods in the text of

encounter notes of patients with critical illness." Journal of biomedical informatics 89 (2019): 114-

121.

• TREC: Text REtrievel Conference
• Started in 1992

• SemEval: Semantic Evaluation
• Started in 1998

• BioCreative
• Critical Assessment of Information Extraction in Biology
• Started in 2004; latest edition: 2023

• BioASQ
• Started in 2013

Shared tasks

• Find clinical trials relevant for a patient
• Use synthetic patient cases (admission note)

• Find relevant Clinical Trials from ClinicalTrials.gov (490,899
studies)

• https://www.trec-cds.org/2022.html

TREC – Clinical Trials subtask

• Completed tasks:
• Large-Scale Online Biomedical Semantic Indexing

• MedProcNER On MEDical PROCedure Named Entity Recognition

• DisTEMIST On Disease Text Mining And Indexing

• MESINESP On Medical Semantic Indexing In Spanish

• Funding Information Extraction From Biomedical Literature

• Ongoing (2024):
• Biomedical Semantic QA (Involves IR, QA, Summarization And More)

• Synergy On Biomedical Semantic QA For Developing Issues

• MultiCardioNER On Mutiple Clinical Entity Detection In Multilingual Medical
Content

• BioNNE On Nested NER In Russian And English

BioASQ

• Biomedical Text mining
• Text mining tasks

• Named Entity recognition
• Entity Linking
• Relation Extraction

• Text mining challenges
• Further reading

• Speech and Language Processing Chapter 8
• Text mining for bioinformatics using biomedical literature

Summary

https://web.stanford.edu/~jurafsky/slp3/
https://www.researchgate.net/publication/323220245_Text_Mining_for_Bioinformatics_Using_Biomedical_Literature

• Use a BERT model with spacy to classify Named Entities and link
to gene ontology

• Get embeddings of these entity and calculate their similarity
• https://spacy.io/

Tutorial

https://spacy.io/

• Install transformers (use google colab with personal account:
https://colab.research.google.com/drive)

!pip install scispacy

• Download a language model e.g. SciBERT:
!pip install https://s3-us-west-

2.amazonaws.com/ai2-s2-

scispacy/releases/v0.5.4/en_core_sci_scibert-

0.5.4.tar.gz

• Check https://allenai.github.io/scispacy/ for other models if you’re using
your computer

Tutorial

https://colab.research.google.com/drive
https://allenai.github.io/scispacy/

import spacy

import scispacy

import scispacy.linking

nlp = spacy.load("en_core_sci_scibert")

doc = nlp("""Alterations in the hypocretin

receptor 2 and preprohypocretin genes produce

narcolepsy in some animals.""")

Tutorial

from https://applied-language-technology.mooc.fi/html/notebooks/part_iii/05_embeddings_continued.html

from spacy.language import Language

import numpy as np

@Language.factory('tensor2attr')

class Tensor2Attr:

def __init__(self, name, nlp):

pass

def __call__(self, doc):

self.add_attributes(doc)

return doc

def add_attributes(self, doc):

doc.user_hooks['vector'] = self.doc_tensor

doc.user_span_hooks['vector'] = self.span_tensor

doc.user_token_hooks['vector'] = self.token_tensor

doc.user_hooks['similarity'] = self.get_similarity

doc.user_span_hooks['similarity'] = self.get_similarity

doc.user_token_hooks['similarity'] = self.get_similarity

def doc_tensor(self, doc):

return doc._.trf_data.tensors[-1].mean(axis=0)

def span_tensor(self, span):

tensor_ix = span.doc._.trf_data.align[span.start: span.end].data.flatten()

out_dim = span.doc._.trf_data.tensors[0].shape[-1]

tensor = span.doc._.trf_data.tensors[0].reshape(-1, out_dim)[tensor_ix]

return tensor.mean(axis=0)

def token_tensor(self, token):

tensor_ix = token.doc._.trf_data.align[token.i].data.flatten()

out_dim = token.doc._.trf_data.tensors[0].shape[-1]

tensor = token.doc._.trf_data.tensors[0].reshape(-1, out_dim)[tensor_ix]

return tensor.mean(axis=0)

def get_similarity(self, doc1, doc2):

return np.dot(doc1.vector, doc2.vector) / (doc1.vector_norm * doc2.vector_norm)

nlp.add_pipe('tensor2attr')

doc = nlp("""Alterations in the hypocretin receptor 2 and

preprohypocretin genes produce narcolepsy in some animals.""")

for token in doc:

print(token.text, token.lemma_, token.pos_, token.tag_,

token.dep, token.shape_, token.is_alpha, token.is_stop,

token.vector[:5])

print(doc[0].vector.shape)

texts = ["Alterations in the hypocretin receptor 2 and preprohypocretin

genes produce narcolepsy in some animals.",

"Glaucoma is a leading cause of blindness but its molecular

etiology is poorly understood.",

"Glaucoma involves retinal ganglion cell death and optic nerve

damage that is often associated with elevated intraocular pressure (IOP)"]

for doc in nlp.pipe(texts, disable=["tok2vec", "tagger", "parser",

"attribute_ruler", "lemmatizer"]):

Do something with the doc here

print([(ent.text, ent.label_, ent.vector[:3]) for ent in doc.ents])

More efficient:

!curl -s "https://raw.githubusercontent.com/UCDenver-
ccp/CRAFT/master/articles/txt/11532192.txt" > doc.txt

with open("doc.txt") as f:

doc_text = f.read()

print(doc_text)

entities = []

for doc in nlp.pipe(doc_text.split("\n"),
disable=["tok2vec", "tagger", "parser",
"attribute_ruler", "lemmatizer"]):

print(doc.ents)

Download a document

!apt-get install gawk

!pip install merpy ssmpy

import merpy

merpy.download_lexicons()

Entity Linking using MER

def get_doc_entities(doc):

entities = [] # store tuples (name, ID, vector)

entity = doc.ents

for ent in entity:

linked_ent = merpy.get_entities(ent.text, "go")

#print(ent, ent[0].ent_type_, linked_ent)

if len(linked_ent[0]) > 1:

print(ent, linked_ent)

entities.append((linked_ent[-1][-2], linked_ent[-1][-1].split("/")[-1], ent.vector))

return entities

Get linked entities of each text

entities = []

for doc in nlp.pipe(doc_text.split("\n"),
disable=["tok2vec", "tagger", "parser",
"attribute_ruler", "lemmatizer"]):

sent_entities = get_doc_entities(doc)

if len(sent_entities) > 0:

entities += sent_entities

Get linked entities of each text

from sklearn.metrics.pairwise import
cosine_similarity

compute embedding sim between every pair

for ent1 in entities:

for ent2 in entities:

print(ent1[0], "x", ent2[0], "=",
cosine_similarity([ent1[2]], [ent2[2]]))

Compare entities from the same document

all_sims = cosine_similarity([e[2] for e in entities],[e[2] for e in entities])

for i, ent1 in enumerate(entities):

for j, ent2 in enumerate(entities):

print(ent1[0], "x", ent2[0], "=", all_sims[i][j])

Better:

go2emb = {}

for ent in entities:

if ent[1] not in go2emb:

go2emb[ent[1]] = []

go2emb[ent[1]].append(ent[2])

for goid in go2emb:

go2emb[goid] = sum(go2emb[goid])/len(go2emb[goid])

for goid in go2emb:

for goid2 in go2emb:

print(goid, "x", goid2, "=",

cosine_similarity([go2emb[goid]], [go2emb[goid2]]))

Combine entities of the same GO term

• Now do this for more documents:
• Get articles from PubMed or use these files:

• https://raw.githubusercontent.com/UCDenver-
ccp/CRAFT/master/articles/txt/11319941.txt

• https://raw.githubusercontent.com/UCDenver-
ccp/CRAFT/master/articles/txt/11597317.txt

• What are the most similar entity pairs of each document? What about
against other documents?

• What is the average entity similarity?
• What are the most common GO terms in a document and in all

documents?

Tutorial

https://raw.githubusercontent.com/UCDenver-ccp/CRAFT/master/articles/txt/11319941.txt
https://raw.githubusercontent.com/UCDenver-ccp/CRAFT/master/articles/txt/11319941.txt
https://raw.githubusercontent.com/UCDenver-ccp/CRAFT/master/articles/txt/11597317.txt
https://raw.githubusercontent.com/UCDenver-ccp/CRAFT/master/articles/txt/11597317.txt

• Check CRAFT corpus test set PMIDs:
• https://github.com/UCDenver-ccp/CRAFT/blob/master/articles/ids/craft-

ids-test.txt

• Select 5 to 10 documents
• Apply NER and EL pipeline from this tutorial
• Calculate semantic similarity using ontology and using

embeddings
• Between every term of the same document and between every document

• Analyze results – find compare scores and find outliers

Assignment 2

	Slide 1: 12 – Biomedical Text Mining
	Slide 2: Biomedical Text Mining
	Slide 3: Databases and ontologies
	Slide 4
	Slide 5: Recent developments in NLP
	Slide 6: Identifying Relevant information
	Slide 7: Pipeline example
	Slide 8: Named entity recognition (NER)
	Slide 9: Deep learning/Transformer Models
	Slide 10: Entity Linking (EL)
	Slide 11: EL using deep learning
	Slide 12: Relation extraction (RE)
	Slide 13: Relation Extraction
	Slide 14: Text mining tasks
	Slide 15: Shared tasks
	Slide 16: TREC – Clinical Trials subtask
	Slide 17: BioASQ
	Slide 18: Summary
	Slide 19: Tutorial
	Slide 20: Tutorial
	Slide 21: Tutorial
	Slide 22
	Slide 23
	Slide 24: More efficient:
	Slide 25: Download a document
	Slide 26: Entity Linking using MER
	Slide 27: Get linked entities of each text
	Slide 28: Get linked entities of each text
	Slide 29: Compare entities from the same document
	Slide 30: Better:
	Slide 31: Combine entities of the same GO term
	Slide 32: Tutorial
	Slide 33: Assignment 2

