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Features are very important
■ Example: long division using Arabic or Roman numerals
■ In machine learning, the right representation makes all the

difference
■ Deep learning can be seen as stacked feature extractors, until the

final classification
• The top layer could even be replaced by another type of model, in theory

Representation learning
■ Supervised learning with limited data can lead to overfitting
■ But learning the best representation can be done with unlabelled

data
• Unsupervised and semi-supervised learning can help find the right features
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"Meta-priors": what makes a good representation?
Representation Learning; Bengio, Courville, Vincent, 2013

■ Manifolds:
• Actual data is distributed in a subspace of all possible feature value combinations

■ Disentanglement:
• Data is generated by combination of independent factors (e.g. shape, color,

lighting, ...)

■ Hierarchical organization of explanatory factors:
• Concepts that explain reality can be composed of more elementar concepts (e.g.

edges, shapes, patterns)

■ Semi-supervised learning:
• Unlabelled data is more numerous and can be used to learn structure
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"Meta-priors": what makes a good representation?
Representation Learning; Bengio, Courville, Vincent, 2013

■ Shared factors:
• Important features for one problem may also be important for other problems (e.g.

image recognition)

■ Sparsity:
• Each example may contain only some of the relevant factors (ears, tail, legs, wings,

feet)

■ Smoothness:
• The function we are learning outputs similar  for similar y x
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"Meta-priors": what makes a good representation?
Representation Learning; Bengio, Courville, Vincent, 2013

■ If we can capture these regularities, we can extract useful features
from our data

■ These features can be reused in different problems, even with
different data
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Unsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised Pretraining

Greedy layer-wise unsupervised pretraining
■ Greedy: optimizes each part independently
■ Layer-wise: pretraining is done one layer at a time
• E.g. train autoencoder, discard decoder, use encoding as input for next layer

(another autoencoder)

■ Unsupervised: each layer is trained without supervision (e.g.
autoencoder)

■ Pretraining: the goal is to initialize the network
• It is followed by fine-tuning with backpropagation
• Or by training of a classifier "on top" of the pretrained layers
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Why should this work?
■ Initialization has regularizing effect
• Initially thought as a way to find different local minima, but this does not seem to be

the case (ANN do not generally stop at minima)

• It may be that pretraining allows the network to reach a different region of the
parameter space



9

Unsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised PretrainingUnsupervised Pretraining

When does it work?
■ Poor initial representations
• E.g. word embedding from one-hot vectors

• One-hot vectors are all equidistant, which is bad for learning

• Unsupervised pretraining helps find representations that are more useful

■ Example: (Large) Language Models
• Known as self-supervised learning, latent representations are called word

embeddings



https://developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-lower-dimensional-space
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When does it work?
■ Poor initial representations
• E.g. word embedding from one-hot vectors

• One-hot vectors are all equidistant, which is bad for learning

• Unsupervised pretraining helps find representations that are more useful

■ Regularization, for few labelled examples
• If labelled data is scarce, there is greater need for regularization and unsupervised

pretraining can use unlabelled data for this

■ Example: Training trajectories with and without pretraining
• Concatenate vector of outputs for all test set at different iterations

• (50 nertworks with and without pretraining)

• Project into 2D (tSNE and ISOMAP)
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■ Regularizing effect
• Ehrlan et. al. 2010: output vectors for all data, reduce dimensionality, plot

t-Distributed Stochastic Neighbor Embedding and ISOMAP
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Unsupervised pretraining is historically important
■ It was the first practical method for training deep networks
■ Most DL problems habed abandoned it because of ReLU and

dropout, which allows efficient supervised training and regularization
of the whole network

• For very small datasets, other methods outperform neural networks

• e.g. Bayesian methods

■ Another disadvantage: having two training stages makes it harder to
adjust Hyperparameters

■ Commonly used in some applications, such as natural language
processing

• Unsupervised pretraining with billions of examples to learn good word
representations
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Transfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer Learning

Two different tasks with shared relevant factors
■ Shared lower level features:
• E.g. distinguish between cats and dogs, or between horses and donkeys

• The low level features are mostly the same, only the higher level classification
layers need to change

■ Shared higher level representations:
• E.g. speech recognition

• The high level generation of sentences is the same for different speakers

• However, the low level feature extraction may need to be tailored to each speaker
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Domain adaptationDomain adaptationDomain adaptationDomain adaptationDomain adaptationDomain adaptationDomain adaptationDomain adaptationDomain adaptation

Same underlying function but different domains
■ We want to model the same mapping from input to output, but are

using different sets of examples
■ E.g. sentiment analysis
• Model was trained on customer reviews for movies and songs

• Now we need to do the same for electronics

• There should be only one mapping from words to happy or unhappy, but we are
training on different sets with different words

• This is one example where unsupervised training (DAE - denoising autoencoders)
can help
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Concept DriftConcept DriftConcept DriftConcept DriftConcept DriftConcept DriftConcept DriftConcept DriftConcept Drift

Similar to Transfer learning or domain adaptation
■ But occurs when the change is gradual over time
• E.g. as the brand becomes more popular, customer base changes from specialized

to general



17

Transfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer LearningTransfer Learning

Use previous experience in new conditions
■ The common idea is that we can use what was learned before to

help learn now
■ Extreme examples: one-shot learning and zero-shot learning
■ Zero-shot learning: no labelled examples of new classes are

necessary
• Everything was learned on other classes or unsupervised

■ One-shot learning: use only one labelled example to learn new
dataset

• The rest was learned on other data
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■ Zero-shot learning, example:
• Unsupervised learning of word manifold, supervised mapping of known images

• A new image is mapped to word manifold

Socher et. al. Zero-Shot Learning Through Cross-Modal Transfer (2013)
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Improve learning from poor representations
• Find the best features

■ Regularization or feature extraction with unlabelled data
■ Historically important in deep learning
• Still used in NLP (self-supervised learning)

■ Transfer learning (often supervised)
Further reading
■ Goodfellow et.al, Deep learning, Chapter 15 (and 8.7.4)
■ Bengio et. al. Representation Learning: A Review and New

Perspectives, 2013
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Exercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learningExercise 1: transfer learning
Fashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNISTFashion MNIST to MNIST
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Transfer learning
■ Use network trained on Fashion MNIST
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ExerciseExerciseExerciseExerciseExerciseExerciseExerciseExerciseExercise

Transfer learning
■ Use network trained on Fashion MNIST

■ Use Keras functional API and pre-trained model
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Transfer learning
■ Using pre-trained model:
• Create same graph as model we trained last week
• Load weights from last week's trained model
• Fix weights of convolutional part (won't be retrained)
• Recreate the dense classifier and train it on MNIST
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ExerciseExerciseExerciseExerciseExerciseExerciseExerciseExerciseExercise

■ Prepare dataset
• Same process as last week, but with MNIST instead of Fashion MNIST

from tensorflow import keras
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, BatchNormalization, Conv2D, Dense
from tensorflow.keras.layers import MaxPooling2D, Activation, Flatten, Dropout

((trainX, trainY), (testX, testY)) = keras.datasets.mnist.load_data()
trainX = trainX.reshape((trainX.shape[0], 28, 28, 1))
testX = testX.reshape((testX.shape[0], 28, 28, 1))
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0
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■ Keras functional API
• Layer objects are callable (implement __call__ method)
• Receive tensors as arguments, return tensors
•  Input instantiates a Keras tensor (shaped like the data)
• Naming layers helps finding them again in the model

■ We start by recreating the original model architecture

inputs = Input(shape=(28,28,1),name='inputs')
layer = Conv2D(32, (3, 3), padding="same", input_shape=(28,28,1))(inputs)
layer = Activation("relu")(layer)
layer = BatchNormalization(axis=-1)(layer)
layer = Conv2D(32, (3, 3), padding="same")(layer)
layer = Activation("relu")(layer)
layer = BatchNormalization(axis=-1)(layer)
layer = MaxPooling2D(pool_size=(2, 2))(layer)
layer = Dropout(0.25)(layer)
...
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■ Chain layers as in the original model
■ Create the old model and compile it
■ Load previous weights and disable training in the old model
■ Note: Flatten layer named for use in new model

...
features = Flatten(name='features')(layer)
layer = Dense(512)(features)
layer = Activation("relu")(layer)
layer = BatchNormalization()(layer)
layer = Dropout(0.5)(layer)
layer = Dense(10)(layer)
layer = Activation("softmax")(layer)

old_model = Model(inputs = inputs, outputs = layer)
old_model.compile(optimizer=SGD(), loss='mse')
old_model.load_weights('fashion_model')
for layer in old_model.layers:
    layer.trainable = False
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ExerciseExerciseExerciseExerciseExerciseExerciseExerciseExerciseExercise

■ Create new dense layers for new model
• The input for this layer is the "features" layer in old model

■ Then create the new model with:
• Old model inputs as input
• New softmax layer as output

■ This chains old CNN to new dense layer

layer = Dense(512)(old_model.get_layer('features').output)
layer = Activation("relu")(layer)
layer = BatchNormalization()(layer)
layer = Dropout(0.5)(layer)
layer = Dense(10)(layer)
layer = Activation("softmax")(layer)
model = Model(inputs = old_model.get_layer('inputs').output, outputs = layer)
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■ Now train

NUM_EPOCHS = 5
BS=512
opt = SGD(lr=1e-2, momentum=0.9)
model.compile(loss="categorical_crossentropy",
              optimizer=opt, metrics=["accuracy"])
model.summary()
H = model.fit(trainX, trainY,validation_data=(testX, testY),
             batch_size=BS, epochs=NUM_EPOCHS)

■ Summary:

Total params: 1,679,082
Trainable params: 1,612,298
Non-trainable params: 66,784

■ Compare with training all model from the start
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Exercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction withExercise 2: dimension reduction with
autoencoderautoencoderautoencoderautoencoderautoencoderautoencoderautoencoderautoencoderautoencoder
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AutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoder

■ Project MNIST data set into 2D
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■ Need some extra layers:

from tensorflow.keras.layers import UpSampling2D,Reshape

■ Encoder:

def autoencoder():
  inputs = Input(shape=(28,28,1),name='inputs')
  layer = Conv2D(32, (3, 3), padding="same", input_shape=(28,28,1))(inputs)
  layer = Activation("relu")(layer)
  layer = BatchNormalization(axis=-1)(layer)
  #[...] parts missing here!
  layer = MaxPooling2D(pool_size=(2, 2))(layer)
  #[...] parts missing here!
  layer = Conv2D(8, (3, 3), padding="same")(layer)
  layer = Activation("relu")(layer)
  layer = BatchNormalization(axis=-1)(layer)

  layer = Flatten()(layer)
  features = Dense(2,name='features')(layer)
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■ Decoder:

 layer = BatchNormalization()(features)
 layer = Dense(8*7*7,activation="relu")(features)
 layer = Reshape((7,7,8))(layer)
 layer = Conv2D(8, (3, 3), padding="same")(layer)
 layer = Activation("relu")(layer)
 layer = BatchNormalization(axis=-1)(layer)
 layer = Conv2D(16, (3, 3), padding="same")(layer)
 layer = Activation("relu")(layer)
 layer = BatchNormalization(axis=-1)(layer)
 layer = UpSampling2D(size=(2,2))(layer)
 [...]
 layer = Conv2D(32, (3, 3), padding="same")(layer)
 layer = Activation("relu")(layer)
 layer = BatchNormalization(axis=-1)(layer)
 layer = Conv2D(1, (3, 3), padding="same")(layer)
 layer = Activation("sigmoid")(layer)
 autoencoder = Model(inputs = inputs, outputs = layer)
 encoder = Model(inputs=inputs,outputs=features)
 return autoencoder,encoder
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AutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoderAutoencoder

Suggestions
■ Architecture:
• Convolution layer with 32 filters, followed by pooling

• Convolution layer with 32 filters, then convolution layer with 16 filters, then pooling

• Convolution layer with 16 filters, then convolution layer with 8 filters, then pooling

• Dense layer with 2 neurons and linear output, then dense layer with 8*7*7 neurons
(relu) and reshape

• Convolutions in reverse (8, 16, 16, 32 and 32 filters), and upsampling

• A final convolution of 1 filter for the (sigmoid) output.

■ Training: takes some time (40 epochs or more...)
• Details weigh little on the loss function

■ Save weights after training!
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■ Check representation, plot in 2D:

def plot_representation():
    ae,enc = autoencoder()
    ae.load_weights('mnist_autoencoder.h5')
    encoding = enc.predict(testX)
    plt.figure(figsize=(8,8))
    for cl in np.unique(testY):
        mask = testY == cl
        plt.plot(encoding[mask,0],encoding[mask,1],'.',label=str(cl))
    plt.legend()
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■ Check reconstruction:

from skimage.io import imsave

def check_images():
    ae,enc = autoencoder()
    ae.load_weights('mnist_autoencoder.h5')
    imgs = ae.predict(testX[:10])
    for ix in range(10):
        imsave(f'T03_{ix}_original.png',testX[ix])
        imsave(f'T03_{ix}_restored.png',imgs[ix])
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Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1



40

Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1

Context: image classification
■ Super-resolution fluorescence microscopy images of bacteria
■ Stage 0: before division starts
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Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1

Context: image classification
■ Super-resolution fluorescence microscopy images of bacteria
■ Stage 1: septum starts to form
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Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1

Context: image classification
■ Super-resolution fluorescence microscopy images of bacteria
■ Stage 2: septum is formed, before cell splits
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Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1Assignment 1

■ Data:400 labelled images, 3892 unlabelled images
• (40x40 pixels, grayscale)

data = np.load('data.npz')
X_u = data['unlabelled'].astype("float32") / 255.0
X_l = data['labelled'].astype("float32") / 255.0
Y_l = keras.utils.to_categorical(data['labels'],3)

■ Tasks: experiment, justify and discuss architectures for
• A classifier using the 400 labelled images (300 train, 100 validation)

• An autoencoder with 3892 unlabelled images (use the 400 for validation)

• A simpler classifier using the encoded representations of the 400 labelled images
(300 train, 100 validation)

■ Similar to the exercises we have done so far.
■ Deadline: March 29 (ideally)




