
Técnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para BiologiaTécnicas de IA para Biologia

2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks2 - Training Neural Networks

André Lamúrias

1

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Summary
■ Algebra (quick revision)
■ The computational graph and AutoDiff
■ Training with Stochastic Gradient Descent
■ Introduction to the Keras Sequential API

2

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

3

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Basic concepts:
■ Scalar : A number
■ Vector : An ordered array of numbers
■ Matrix : A 2D array of numbers
■ Tensor : A relation between sets of algebraic objects
• (numbers, vectors, etc.)
• For our purposes: an N-dimensional array of numbers

■ We will be using tensors in our models (hence Tensorflow)

4

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Adition and subtraction:
• In algebra, we can add or subtract tensors with the same dimensions
• The operation is done element by element

5

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

6

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

7

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

8

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

9

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

10

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

11

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

12

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

13

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as rows

C = AB

A B

14

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

■ Neuron: linear combination of inputs with non-linear activation

15

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Tensorflow also allows broadcasting like numpy
• Element-wise operations aligned by the last dimensions

16

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Tensor operations
■ Tensorflow also allows broadcasting like numpy
• Element-wise operations aligned by the last dimensions

■ tf.matmul() also works on 3D tensors, in batch
• Can be used to compute the product of a batch of 2D matrices
• Example (from Tensorflow matmul documentation):

In : a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
In : b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
In : c = tf.matmul(a, b) # or a * b
Out: <tf.Tensor: id=676487, shape=(2, 2, 2), dtype=int32, numpy=
array([[[94, 100],
 [229, 244]],

 [[508, 532],
 [697, 730]]], dtype=int32)>

17

AlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebraAlgebra

Why is this important?
■ Our models will be based on this type of operations
■ Example batches will be tensors (2D or more)
■ Network layers can be matrices of weights (several neurons)
■ Loss functions will operate and aggregate on activations and data
In practice mostly hidden
■ When we use the keras API we don't need to worry about this

■ But it's important to understand how things work
■ And necessary to work with basic Tensorflow operations

18

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

19

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

■ Classify these data with two weights, sigmoid activation

20

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

Computing activation
■ Input is a matrix with data, two columns for the features, N rows

■ To compute use matrix multiplication∑
j=1

2

wjxj

21

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

Computing activation
■ Input is a matrix with data, two columns for the features, N rows

■ To compute use matrix multiplication

■ For each example with 2 features we get one weighted sum
■ Then apply sigmoid function, one activation value per example
■ Thus, we get activations for a batch of examples

∑
j=1

2

wjxj

22

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)Training (Backpropagation)

23

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Backpropagation
■ For weight on hidden layer , propagate error backwards
• Gradient of error w.r.t. weight of output neuron:

■ Chain derivatives through the network:

■ (See more in lecture notes)

m i

δE
j

kn

δs
j

kn

δs
j

kn

δnet
j

kn

δnet
j

kn

δwmkn

Δw
j
min =

=

−η()∑
p

δE
j
kp

δs
j
kp

δs
j
kp

δnet
j
kp

δnet
j
kp

δs
j
in

δs
j
in

δnet
j
in

δnet
j
in

δwmin

η() (1 −) = η∑
p

δkpwmkp s
j
in s

j
in x

j
i δinx

j
i

24

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Backpropagation Algorithm
■ Propagate the input forward through all layers
• Compute activations

■ For output neurons compute
• Loss function
• Derivatives of loss function

■ Backpropagate derivatives of loss function to back layers
■ Update weights using the computed derivatives
This can be generalized
■ Different architectures
■ Different activation functions
■ Different loss functions, regularization, etc

25

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Computing derivatives
■ Symbolic differentiation:
• Compute the expression for the derivatives given the function.
• Difficult, especially with flow control (if, for)

■ Numerical differentiation:
• Use finite steps to compute deltas and approximate derivatives.

• Computationally inefficient and prone to convergence problems.

■ Automatic differentiation:
• Apply the chain rule to basic operations that compose complex functions

• product, sum, sine, cosine, etc

• Applicable in general provided we know the derivative of each basic operation

Δ = −η = η(−) (1 −)w
j
i

δE j

δwi

tj sj sj sj x
j
i

26

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

■ Automatic differentiation example:

(cosx) = − sinxargmin
x

d cosx

dx

27

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

■ Automatic differentiation example:

(cosx) = − sinxargmin
x

d cosx

dx

28

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

■ Automatic differentiation example:
(cosx + sinx)argmin

x
x2

■ Tensorflow operators include gradient information

29

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Stochastic Gradient Descent
■ Going back to our simple model:

30

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Stochastic Gradient Descent
■ Since we can compute the derivatives, we can "slide" down the loss

function

0:00 / 0:49 0:00 / 0:45

31

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Stochastic Gradient Descent
■ Gradient Descent because of sliding down the gradient
■ Stochastic because we are presenting a random minibatch of

examples at a time

0:00 / 0:49 0:00 / 0:45

32

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Stochastic Gradient Descent
■ Gradient Descent because of sliding down the gradient
■ Stochastic because we are presenting a random minibatch of

examples at a time
Algorithm:
■ Estimate the gradient of given examples:

■ Update with a learning rate

L (f (x, θ) , y) m

= (L(f (, θ) ,))ĝ t ∇θ

1

m
∑
i=1

m

x(i) y(i)

θ ϵ
= − ϵθt+1 θt ĝ t

33

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

SGD can be improved with momentum
■ If we are rolling down the

surface we could pick up
speed

0:00 / 0:49

■ Use gradients as an "acceleration", with

= α − (L(f (, θ) ,))vt+1 vt ∇θ

1

m
∑
i=1

m

x(i) y(i)

= + ϵθt+1 θt vt+1

34

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

SGD can be improved with momentum
■ SGD ■ SGD + 0.9 momentum

0:00 / 0:49 0:00 / 0:49

35

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

Minibatch size
■ Averaging over a set of examples gives a (slightly) better estimate

of the gradient, improving convergence
• (Note that the true gradient is for the mean loss over all points)

■ The main advantage of batches is in using multicore hardware
(GPU, for example)

• This is also the reason for power of 2 minibatch sizes (8, 16, 32, ...)

■ Smaller minibatches improve generalization because of the random
error

• The best for this is a minibatch of 1, but this takes much longer to train

■ In practice, minibatch size will probably be limited by RAM.

36

TrainingTrainingTrainingTrainingTrainingTrainingTrainingTrainingTraining

■ Minibatch of 10 ■ Minibatch of 1

0:00 / 0:49 0:00 / 0:49

■ Note: the actual time is much longer for minibatch of 1

37

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Improving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the model

38

Better ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter Models

Our simple (pseudo) neuron lacks a bias

y = + bias∑
j=1

2

wjxj

39

Better ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter Models

Our simple (pseudo) neuron lacks a bias
■ This means that it is stuck a (0,0)

■ No bias input ■ With bias input

0:00 / 0:45 0:00 / 0:45

40

Better ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter Models

And one neuron cannot properly separate these sets
■ We need a better model:

41

Better ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter ModelsBetter Models

Neural Networks stack nonlinear transformations

42

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

43

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Initialization
■ Weights: random values close to zero (Gaussian or uniform p.d)
• Need to break symmetry between neurons (but bias can start the same)

• Some activations (e.g. sigmoid) saturate rapidly away from zero

■ (There are other, more sophisticated methods)

44

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Convergence
■ Since weight initialization and order of examples is random, expect

different runs to converge at different epochs

45

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Convergence
■ Standardize the inputs:

• It is best to avoid different features weighing differentely

• It is also best to avoid very large or very small values due to numerical problems

• Shifting the mean of the inputs to 0 and scaling the different dimensions also
improves the loss function "landscape"

=xnew
x−μ(X)

σ(X)

46

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Training schedules
■ Epoch: one full pass through the training data
■ Mini-batch: one batch with part of the training data
Generally needs many epochs to train
■ (the greater the data set, the fewer the epochs, other things being

equal)

47

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Shuffle the data in each epoch
■ Otherwise some patterns will repeat

0:00 / 0:45

48

Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details

Take care with the learning rate
■ Too small and training takes too long
■ But if it is too large convergence is poor at the end

0:00 / 0:45

49

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Tutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential API

50

Keras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras Sequential

Building a model with Keras
import numpy as np
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from t01_aux import plot_model #auxiliary plotting function

■ Create a Sequential model and add layers

model = Sequential()
model.add(Dense(4, activation = 'sigmoid',input_shape=(inputs,)))

■ In this tutorial, inputs is 2 for the 2D dataset, but it can vary

model.add(Dense(4, activation = 'sigmoid'))
model.add(Dense(1, activation = 'sigmoid'))

■ Only the first layer of a dense network needs the input size

51

Keras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras Sequential

■ Compile and check the model

opt = SGD(lr=INIT_LR, momentum=0.9)
model.compile(loss="mse", optimizer=opt, metrics=["mse"])
model.summary()

Layer (type) Output Shape Param #
===
dense (Dense) (None, 4) 12

dense_01 (Dense) (None, 4) 20

dense_02 (Dense) (None, 1) 5
===
Total params: 37
Trainable params: 37
Non-trainable params: 0

52

Keras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras SequentialKeras Sequential

■ Now we can train the model and obtain the history of training.
■ We can also plot the loss function and how the model classifies:

H = model.fit(X, Y, batch_size=16, epochs=10000)
plt.plot(H.history['loss'])
plot_model(model,X,Y)

53

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

SummarySummarySummarySummarySummarySummarySummarySummarySummary

54

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Summary
■ Matrix algebra
■ Automatic Differentiation
■ Layers and nonlinear transformations
■ Training multilayer feedforward neural networks
• MLP is a special case, fully connected

Further reading:
■ Goodfellow, chapters 2 (algebra), 4 (calculus) and 8 (optimization)
■ Andrej Karpathy's Intro to NNs and backprop:

https://www.youtube.com/watch?v=VMj-3S1tku0

