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Summary
■ Algebra (quick revision)
■ The computational graph and AutoDiff
■ Training with Stochastic Gradient Descent
■ Introduction to the Keras Sequential API
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Basic concepts:
■ Scalar : A number
■ Vector : An ordered array of numbers
■ Matrix : A 2D array of numbers
■ Tensor : A relation between sets of algebraic objects
• (numbers, vectors, etc.)
• For our purposes: an N-dimensional array of numbers

■ We will be using tensors in our models (hence Tensorflow)
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Tensor operations
■ Adition and subtraction:
• In algebra, we can add or subtract tensors with the same dimensions
• The operation is done element by element
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Tensor operations
■ Matrix multiplication (2D)
• Follows algebra rules:

 columns same as  rows

C = AB

A B
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■ Neuron: linear combination of inputs with non-linear activation
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Tensor operations
■ Tensorflow also allows broadcasting like numpy
• Element-wise operations aligned by the last dimensions
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Tensor operations
■ Tensorflow also allows broadcasting like numpy
• Element-wise operations aligned by the last dimensions

■ tf.matmul() also works on 3D tensors, in batch
• Can be used to compute the product of a batch of 2D matrices
• Example (from Tensorflow matmul documentation):

In : a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])
In : b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])
In : c = tf.matmul(a, b) # or a * b
Out: <tf.Tensor: id=676487, shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 94, 100],
        [229, 244]],

       [[508, 532],
        [697, 730]]], dtype=int32)>
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Why is this important?
■ Our models will be based on this type of operations
■ Example batches will be tensors (2D or more)
■ Network layers can be matrices of weights (several neurons)
■ Loss functions will operate and aggregate on activations and data
In practice mostly hidden
■ When we use the keras API we don't need to worry about this

■ But it's important to understand how things work
■ And necessary to work with basic Tensorflow operations



18

Training Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural NetworksTraining Neural Networks

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example



19

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

■ Classify these data with two weights, sigmoid activation

                         



20

Basic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic ExampleBasic Example

Computing activation
■ Input is a matrix with data, two columns for the features, N rows

■ To compute  use matrix multiplication∑
j=1

2

wjxj
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Computing activation
■ Input is a matrix with data, two columns for the features, N rows

■ To compute  use matrix multiplication

■ For each example with 2 features we get one weighted sum
■ Then apply sigmoid function, one activation value per example
■ Thus, we get activations for a batch of examples

∑
j=1

2

wjxj
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Backpropagation
■ For weight  on hidden layer , propagate error backwards
• Gradient of error w.r.t. weight of output neuron:

■ Chain derivatives through the network:

■ (See more in lecture notes)
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Backpropagation Algorithm
■ Propagate the input forward through all layers
• Compute activations

■ For output neurons compute
• Loss function
• Derivatives of loss function

■ Backpropagate derivatives of loss function to back layers
■ Update weights using the computed derivatives
This can be generalized
■ Different architectures
■ Different activation functions
■ Different loss functions, regularization, etc
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Computing derivatives
■ Symbolic differentiation:
• Compute the expression for the derivatives given the function.
• Difficult, especially with flow control (if, for)

■ Numerical differentiation:
• Use finite steps to compute deltas and approximate derivatives.

• Computationally inefficient and prone to convergence problems.

■ Automatic differentiation:
• Apply the chain rule to basic operations that compose complex functions

• product, sum, sine, cosine, etc

• Applicable in general provided we know the derivative of each basic operation
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■ Automatic differentiation example:

(cosx) = − sinxargmin
x

d cosx

dx
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■ Automatic differentiation example:

(cosx) = − sinxargmin
x

d cosx

dx
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■ Automatic differentiation example:
( cosx + sinx)argmin

x
x2

■ Tensorflow operators include gradient information
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Stochastic Gradient Descent
■ Going back to our simple model:
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Stochastic Gradient Descent
■ Since we can compute the derivatives, we can "slide" down the loss

function

 

0:00 / 0:49 0:00 / 0:45
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Stochastic Gradient Descent
■ Gradient Descent  because of sliding down the gradient
■ Stochastic  because we are presenting a random minibatch of

examples at a time

 
0:00 / 0:49 0:00 / 0:45
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Stochastic Gradient Descent
■ Gradient Descent  because of sliding down the gradient
■ Stochastic  because we are presenting a random minibatch of

examples at a time
Algorithm:
■ Estimate the gradient of  given  examples:

■ Update  with a learning rate 

L (f (x, θ) , y) m

= ( L(f ( , θ) , ))ĝ t ∇θ

1

m
∑
i=1

m

x(i) y(i)

θ ϵ
= − ϵθt+1 θt ĝ t
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SGD can be improved with momentum
■ If we are rolling down the

surface we could pick up
speed

0:00 / 0:49

■ Use gradients as an "acceleration", with

= α − ( L(f ( , θ) , ))vt+1 vt ∇θ

1

m
∑
i=1

m

x(i) y(i)

= + ϵθt+1 θt vt+1
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SGD can be improved with momentum
■ SGD ■ SGD + 0.9 momentum

 
0:00 / 0:49 0:00 / 0:49
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Minibatch size
■ Averaging over a set of examples gives a (slightly) better estimate

of the gradient, improving convergence
• (Note that the true gradient is for the mean loss over all points)

■ The main advantage of batches is in using multicore hardware
(GPU, for example)

• This is also the reason for power of 2 minibatch sizes (8, 16, 32, ...)

■ Smaller minibatches improve generalization because of the random
error

• The best for this is a minibatch of 1, but this takes much longer to train

■ In practice, minibatch size will probably be limited by RAM.
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■ Minibatch of 10 ■ Minibatch of 1

 
0:00 / 0:49 0:00 / 0:49

■ Note: the actual time is much longer for minibatch of 1
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Improving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the modelImproving the model
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Our simple (pseudo) neuron lacks a bias

y = + bias∑
j=1

2

wjxj
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Our simple (pseudo) neuron lacks a bias
■ This means that it is stuck a (0,0)

■ No bias input ■ With bias input

 

0:00 / 0:45 0:00 / 0:45
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And one neuron cannot properly separate these sets
■ We need a better model:
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Neural Networks stack nonlinear transformations
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Other DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther DetailsOther Details
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Initialization
■ Weights: random values close to zero (Gaussian or uniform p.d)
• Need to break symmetry between neurons (but bias can start the same)

• Some activations (e.g. sigmoid) saturate rapidly away from zero

■ (There are other, more sophisticated methods)
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Convergence
■ Since weight initialization and order of examples is random, expect

different runs to converge at different epochs
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Convergence
■ Standardize the inputs: 

• It is best to avoid different features weighing differentely

• It is also best to avoid very large or very small values due to numerical problems

• Shifting the mean of the inputs to 0 and scaling the different dimensions also
improves the loss function "landscape"

=xnew
x−μ(X)

σ(X)
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Training schedules
■ Epoch: one full pass through the training data
■ Mini-batch: one batch with part of the training data
Generally needs many epochs to train
■ (the greater the data set, the fewer the epochs, other things being

equal)
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Shuffle the data in each epoch
■ Otherwise some patterns will repeat

0:00 / 0:45
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Take care with the learning rate
■ Too small and training takes too long
■ But if it is too large convergence is poor at the end

0:00 / 0:45
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Tutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential APITutorial: Keras Sequential API
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Building a model with Keras
import numpy as np
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from t01_aux import plot_model   #auxiliary plotting function

■ Create a Sequential model and add layers

model = Sequential()
model.add(Dense(4, activation = 'sigmoid',input_shape=(inputs,)))

■ In this tutorial, inputs is 2 for the 2D dataset, but it can vary

model.add(Dense(4, activation = 'sigmoid'))
model.add(Dense(1, activation = 'sigmoid'))

■ Only the first layer of a dense network needs the input size
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■ Compile and check the model

opt = SGD(lr=INIT_LR, momentum=0.9)
model.compile(loss="mse", optimizer=opt, metrics=["mse"])
model.summary()

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
dense (Dense)                (None, 4)                 12
_________________________________________________________________
dense_01 (Dense)             (None, 4)                 20
_________________________________________________________________
dense_02 (Dense)             (None, 1)                 5
=================================================================
Total params: 37
Trainable params: 37
Non-trainable params: 0
_________________________________________________________________
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■ Now we can train the model and obtain the history of training.
■ We can also plot the loss function and how the model classifies:

H = model.fit(X, Y, batch_size=16, epochs=10000)
plt.plot(H.history['loss'])
plot_model(model,X,Y)
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SummarySummarySummarySummarySummarySummarySummarySummarySummary
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Summary
■ Matrix algebra
■ Automatic Differentiation
■ Layers and nonlinear transformations
■ Training multilayer feedforward neural networks
• MLP is a special case, fully connected

Further reading:
■ Goodfellow, chapters 2 (algebra), 4 (calculus) and 8 (optimization)
■ Andrej Karpathy's Intro to NNs and backprop:

https://www.youtube.com/watch?v=VMj-3S1tku0




