Técnicas de lA para Biologia

1 - Introduction

André Lamúrias

Summary

- Course structure and assessment
- Al and the origin of Artificial Neural Networks
- Machine Learning
- The power of nonlinear transformations
- What deep learning offers

Course Overview

Overview

Objectives

- Overview of two important AI fields in biology
- A practical introduction (some theory, some practice)

Two parts

- Deep learning (sub-symbolic)
- Build and train deep neural networks
- Apply to (semi) realistic problems (realistic take more computation power)
- Ontologies (symbolic)
- Understand and use tools for inference with biological knowledge
- E.g. Gene Ontology

Instructor

André Lamúrias (a.lamurias@fct.unl.pt)

Assessment:

- 2 short assignments, one for each part (25% each)
- 1 test (or exam), on April 22th (during the classes date and time to be confirmed)

Website

tiab.ssdi.di.fct.unl.pt

Main Bibliography (part 1)

- B. Goodfellow et. al., Deep Learning, MIT Press, 2016
- S. Skansi, Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence, Springer, 2018
- A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow, O'Reilly Media, Inc, 2017
- P. Singh and A. Manure, Learn TensorFlow 2.0, Springer 2020

Main Bibliography (part 2)

- P. Robinson and S. Bauer, Introduction to Bio-Ontologies, Chapman & Hall, 2011
- C. Dessimoz and N. Skunca, The Gene Ontology Handbook, Springer, 2017
- G. Antoniou et al., A Semantic Web Primer, MIT Press, 2012
- F: Baader et al., The Description Logic Handbook, Cambridge University Press, 2010
- S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2020

Overview

Software

- Python 3.x + Tensorflow 2
- Options
- virtualenv
- Anaconda
- Docker
- Windows Subsystem for Linux (Ubuntu on Windows)
- Google Colab

The beginning of Al

- 1956: Dartmouth Summer Research Project on Artificial Intelligence
- John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon
- "proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it"
- Initially, most successful approach of AI was to process rules
- Expert systems, logic programming, ...
- Rule-based expert systems
- Rules provided by humans
- Computer does inference to reach conclusions

The beginning of Al

- Rule-based expert systems
- Rules provided by humans
- Computer does inference to reach conclusions
- E.g. MYCIN, 1975 (Shortliffe, A model of inexact reasoning in medicine)

```
If:
(1) the stain of the organism is gram positive, and
(2) the morphology of the organism is coccus, and
(3) the growth conformation of the organism is chains
Then :
there is suggestive evidence (0.7) that the identity of
the organism is streptococcus
```

Such systems were initially quite successful in specific areas

The beginning of Al

- Problems with rule-based expert systems
- Computational complexity
- Rigid rules, less adaptative
- Knowledge aquisition problem

The beginning of Neural Networks

- The modelling of neurons predates modern AI
- 1943: McCulloch & Pitts, model of neuron

BruceBlaus, Chris 73: CC-BY, source Wikipedia

The beginning of Neural Networks

- The modelling of neurons predates modern AI
- 1943: McCulloch & Pitts, model of neuron

Chrislb, CC-BY, source Wikipedia

The perceptron, the first learning machine

1958: Rosenblatt, perceptron could learn to distinguish examples «the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.» New York Times, 1958

Wightman and Rosenblatt. Source: Cornell Chronicle

Perceptron

Linear combination of the *d* inputs and a threshold function:

$$y=\sum_{j=1}^d w_j x_j+w_0 \quad s(y)=egin{cases} 1, & y>0\ 0, & y\leq 0 \end{cases}$$

Training rule for the perceptron:

$$w_i = w_i + \Delta w_i \qquad \Delta w_i = \eta(t-o) x_i$$

- Adjust weights slightly to correct misclassified examples.
- Greater adjustment to those with larger inputs.

Perceptron

- First implemented on an IBM 704, 1958
- Learned to distinguish between cards punched on the right and punched on the left after 50 examples

Rosenblatt and IBM 704. Source: Cornell Chronicle

Perceptron

But then was actually built as a machine

Camera with 20x20 pixels, for image recognition

Electric motors to adjust potentiometers for the weights of the inputs

Mark I Perceptron (Wikipedia)

Perceptron

- Seemed a promising start
- But the perceptron is just a linear model

Perceptron

- It's a single neuron, so a linear classifier
- similar to logistic regression that was already known

Neural Networks

- A very promising early start with neuron and perceptron:
- 1943: McCulloch & Pitts, model of neuron
- 1958: Rosenblatt, perceptron and learning algorithm
- But these turned out to be equivalent to generalized linear models
- And in 1969 Perceptrons (Minsky, Papert): need fully connected networks

1960-mid 1980s: "Al Winter", in particular ANN

- Logic systems ruled AI for the larger part of this period
- But eventually funding was cut drastically
- 1986: Rumelhart, Hinton, Williams, backpropagation can be used for multi-layer networks

What is machine learning?

- "Field of study that gives computers the ability to learn without being explicitly programmed" (Samuel, 1959)
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E" (Mitchell, 1997)

Machine Learning problem

- A task that the system must perform.
- A measure of its performance
- The data used to improve its performance
- Examples:
- Spam filtering
- Image classification
- Medical diagnosis
- Speech recognition
- Autonomous driving
- Clustering, feature representation, ...

- Unsupervised learning
- No need for labels in data;
- Find structure in data
- Clustering is a common example, but we will see applications in deep learning

Example: clustering images

Group searches with features from image and HTML (Cai et al, Clustering of WWW Image Search Results, 2004)

- Unsupervised learning
- Supervised learning
- Uses labelled data and aims at predicting classes or values
- Continuous values: Regression
- Discrete classes: Classification

ML Problems

Supervised learning

Example: face identification

Valenti et al, Machine Learning Techniques for Face Analysis, 2008

- Unsupervised learning
- Supervised learning
- Semi-supervised learning
- Mixes labeled and unlabeled data
- Can be useful to increase size of data set

- Unsupervised learning
- Supervised learning
- Semi-supervised learning
- Self-supervised Learning
- Labels are intrinsic to the data

- Unsupervised learning
- Supervised learning
- Semi-supervised learning
- Self-supervised Learning
- Reinforcement learning
- Optimize output without immediate feedback for each instance

Can solve different kinds of problems

- Extracting new features and finding relations
- Unsupervised learning
- Approximating a target
- Supervised learning
- Optimizing policy
- Reinforcement learning

Traditional approach:

Use very different models, optimizations, etc.

The rise of machine learning

- In the 1990s, AI shifted from knowledge-driven to data-driven with new ML algorithms
- E.g. 1992 Vapnik et. al. publish the kernel trick for SVM

- 1995: SVM (Cortes & Vapnik), Random Forest (Ho)
- 1997: Multi-layered and convolution networks for check processing USA (leCun)
- 1998: MNIST database (LeCun). Benchmarks, libraries and competitions

The power of nonlinearity

Linear classification

Linear classification, e.g. Logistic Regression

Nonlinearity

Linear classification, e.g. Logistic Regression

Linear classification, e.g. Logistic Regression

Nonlinear expansion of attributes

• We can expand the attributes non-linearly ($x_1 imes x_2$)

Nonlinear expansion of attributes

• We can expand the attributes non-linearly ($x_1 imes x_2$)

Nonlinearity

Nonlinear expansion of attributes

• We can expand further $(x_1, x_2, x_1x_2, x_1^2, x_2^2)$

Nonlinearity

Nonlinear expansion of attributes

• We can expand further $(x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1^3, x_2^3)$

Nonlinear expansion of attributes

- With logistic regression this is not practical
- We have to do it by hand
- Support Vector Machines do this automatically

$$rgmax_{ec{lpha}} \sum_{n=1}^N lpha_n - rac{1}{2} \sum_{n=1}^N \sum_{m=1}^N lpha_n lpha_m y_n y_m K(ec{x}_n, ec{x}_m)$$

• Where $\vec{\alpha}$ is a vector of coefficients, $K(\vec{x}_n, \vec{x}_m)$ is the kernel function for some non-linear expansion ϕ of our original data

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} x_1 & x_2 \end{bmatrix} = \begin{bmatrix} x_1^2 & x_1 x_2 \\ \\ x_1 x_2 & x_2^2 \end{bmatrix}$$

Nonlinearity

Nonlinear expansion of attributes

Example, using a polynomial kernel: $K_{\phi(ec{x}^n)} = (ec{x}^T ec{z} + 1)^2$

Nonlinearity

Nonlinear expansion of attributes

Example, using a polynomial kernel: $K_{\phi(ec{x}^n)} = (ec{x}^T ec{z} + 1)^3$

No free lunch

No-free-lunch theorems (Wolpert and MacReady, 1997)

"[I]f an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems."

Important for two reasons:

- No single model can be best at all tasks:
- We need to create different models optimized for different tasks
- Overfitting
- The hypothesis chosen may be so adjusted to the training data it does not generalize

Nonlinearity is important for capturing patterns in data

But can lead to loss of generalization

"With great power comes great overfitting"

Benjamin Parker (attributed)

Occurs when model adjusts to noise

- Some details are informative about patterns in the population
- Some are particular to the data sample and do not generalize

Overfitting

Occurs when model adjusts to noise

- Measuring overfitting:
- Evaluate outside the training set
- Validation set: used for selecting best model, hyperparameters, ...
- Test set: used to obtain unbiased estimate of the true error
- Preventing overfitting:
- Adjust training (regularization)
- Select adequate model
- Use more data (allows more powerful models)

What do we have in "classical" machine learning?

- Many algorithms do nonlinear transformations
- Many different models
- Great diversity, with different algorithms
- The right features
- Feature extraction usually done by the user
- Preventing overfitting
- Method depends on the algorithm
- Ability to use large amounts of data
- Some do, some don't

Deep learning helps solve these problems

- Nonlinear transformations, stacked
- Many different models
- but all built from artificial neurons
- The right features
- can be done automatically determined by the model during training
- Preventing overfitting
- Many ways to regularize
- Ability to use large amounts of data
- Yes!

Summary

Summary

- Overview of the course
- Al and Machine learning
- Nonlinear transformations and Overfitting
- The promise of deep learning

Further reading:

- Skansi, Introduction to Deep Learning, Chapter 1
- Goodfellow et al, Deep Learning, Chapters 1 and 5