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Summary
■ Course structure and assessment
■ AI and the origin of Artificial Neural Networks
■ Machine Learning
■ The power of nonlinear transformations
■ What deep learning offers
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Course OverviewCourse OverviewCourse OverviewCourse OverviewCourse OverviewCourse OverviewCourse OverviewCourse OverviewCourse Overview
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Objectives
■ Overview of two important AI fields in biology
■ A practical introduction (some theory, some practice)
Two parts
■ Deep learning (sub-symbolic)
• Build and train deep neural networks

• Apply to (semi) realistic problems (realistic take more computation power)

■ Ontologies (symbolic)
• Understand and use tools for inference with biological knowledge
• E.g. Gene Ontology
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Instructor
■ André Lamúrias (a.lamurias@fct.unl.pt)
Assessment:
■ 2 short assignments, one for each part (25% each)
■ 1 test (or exam), on April 22th (during the classes - date and time to

be confirmed)
Website
■ tiab.ssdi.di.fct.unl.pt
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Main Bibliography (part 1)
■ B. Goodfellow et. al., Deep Learning, MIT Press, 2016
■ S. Skansi, Introduction to Deep Learning: From Logical Calculus to

Artificial Intelligence , Springer, 2018
■ A. Géron, Hands-on machine learning with Scikit-Learn and

TensorFlow, O'Reilly Media, Inc, 2017
■ P. Singh and A. Manure, Learn TensorFlow 2.0, Springer 2020
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Main Bibliography (part 2)
■ P. Robinson and S. Bauer, Introduction to Bio-Ontologies, Chapman

& Hall, 2011
■ C. Dessimoz and N. Skunca, The Gene Ontology Handbook,

Springer, 2017
■ G. Antoniou et al., A Semantic Web Primer, MIT Press, 2012
■ F: Baader et al., The Description Logic Handbook, Cambridge

University Press, 2010
■ S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

Pearson, 2020
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Software
■ Python 3.x + Tensorflow 2
• Options

• virtualenv
• Anaconda
• Docker
• Windows Subsystem for Linux (Ubuntu on Windows)
• Google Colab
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The beginning of AI
■ 1956: Dartmouth Summer Research Project on Artificial Intelligence
• John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon

• "proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine can
be made to simulate it"

■ Initially, most successful approach of AI was to process rules
• Expert systems, logic programming, ...

■ Rule-based expert systems
• Rules provided by humans
• Computer does inference to reach conclusions
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The beginning of AI
■ Rule-based expert systems
• Rules provided by humans

• Computer does inference to reach conclusions

• E.g. MYCIN, 1975 (Shortliffe, A model of inexact reasoning in medicine)

If:
(1) the stain of the organism is gram positive, and
(2) the morphology of the organism is coccus, and
(3) the growth conformation of the organism is chains
Then :
there is suggestive evidence (0.7) that the identity of
the organism is streptococcus

■ Such systems were initially quite successful in specific areas
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The beginning of AI
■ Problems with rule-based expert systems
• Computational complexity
• Rigid rules, less adaptative
• Knowledge aquisition problem
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The beginning of Neural Networks
■ The modelling of neurons predates modern AI
• 1943: McCulloch & Pitts, model of neuron

BruceBlaus, Chris 73: CC-BY, source Wikipedia
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The beginning of Neural Networks
■ The modelling of neurons predates modern AI
• 1943: McCulloch & Pitts, model of neuron

Chrislb, CC-BY, source Wikipedia
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The perceptron, the first learning machine
■ 1958: Rosenblatt, perceptron could learn to distinguish examples

«the embryo of an electronic computer that [the Navy] expects will be able to walk, talk,
see, write, reproduce itself and be conscious of its existence.»
New York Times, 1958

Wightman and Rosenblatt. Source: Cornell Chronicle
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Perceptron
■ Linear combination of the  inputs and a threshold function:

■ Training rule for the perceptron:

• Adjust weights slightly to correct misclassified examples.
• Greater adjustment to those with larger inputs.
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Perceptron
■ First implemented on an IBM 704, 1958
• Learned to distinguish between cards punched on the right and punched on the left

after 50 examples

Rosenblatt and IBM 704. Source: Cornell Chronicle
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Perceptron
■ But then was actually built as a machine

Camera with 20x20 pixels, for image
recognition

Electric motors to adjust potentiometers
for the weights of the inputs

Mark I Perceptron (Wikipedia)
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Perceptron
■ Seemed a promising start
■ But the perceptron is just a linear model
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Perceptron
■ It's a single neuron, so a linear classifier
■ similar to logistic regression that was already known
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Neural Networks
■ A very promising early start with neuron and perceptron:
• 1943: McCulloch & Pitts, model of neuron
• 1958: Rosenblatt, perceptron and learning algorithm

■ But these turned out to be equivalent to generalized linear models
• And in 1969 Perceptrons (Minsky, Papert): need fully connected networks

1960-mid 1980s: "AI Winter", in particular ANN
■ Logic systems ruled AI for the larger part of this period
■ But eventually funding was cut drastically
■ 1986: Rumelhart, Hinton, Williams, backpropagation can be used

for multi-layer networks
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What is machine learning?
■ "Field of study that gives computers the ability to learn without being

explicitly programmed"
(Samuel, 1959)

■ "A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E"
(Mitchell, 1997)
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Machine Learning problem
■ A task that the system must perform.
■ A measure of its performance
■ The data used to improve its performance
■ Examples:
• Spam filtering
• Image classification
• Medical diagnosis
• Speech recognition
• Autonomous driving
• Clustering, feature representation, ...
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Basic kinds of ML problems
■ Unsupervised learning
• No need for labels in data;

• Find structure in data

• Clustering is a common example, but we will see applications in deep learning
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■ Example: clustering images

Group searches with features from image and HTML (Cai et al, Clustering of WWW Image Search Results, 2004)
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Basic kinds of ML problems
■ Unsupervised learning
■ Supervised learning
• Uses labelled data and aims at predicting classes or values
• Continuous values: Regression
• Discrete classes: Classification
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Supervised learning
■ Example: face identification

Valenti et al, Machine Learning Techniques for Face Analysis, 2008
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Basic kinds of ML problems
■ Unsupervised learning
■ Supervised learning
■ Semi-supervised learning
• Mixes labeled and unlabeled data
• Can be useful to increase size of data set
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Basic kinds of ML problems
■ Unsupervised learning
■ Supervised learning
■ Semi-supervised learning
■ Self-supervised Learning
• Labels are intrinsic to the data
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Basic kinds of ML problems
■ Unsupervised learning
■ Supervised learning
■ Semi-supervised learning
■ Self-supervised Learning
■ Reinforcement learning
• Optimize output without immediate feedback for each instance
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Can solve different kinds of problems
■ Extracting new features and finding relations
• Unsupervised learning

■ Approximating a target
• Supervised learning

■ Optimizing policy
• Reinforcement learning

Traditional approach:
■ Use very different models, optimizations, etc.
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The rise of machine learning
■ In the 1990s, AI shifted from knowledge-driven to data-driven with

new ML algorithms
• E.g. 1992 Vapnik et. al. publish the kernel trick for SVM

■ 1995: SVM (Cortes & Vapnik), Random Forest (Ho)
■ 1997: Multi-layered and convolution networks for check processing

USA (leCun)
■ 1998: MNIST database (LeCun). Benchmarks, libraries and

competitions
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Linear classification
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Linear classification, e.g. Logistic Regression
g( , ) = P( | ) g( , ) =x⃗  w̃ C1 x⃗  x⃗  w̃

1

1 + e−( + )w⃗ T x⃗  w0
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Linear classification, e.g. Logistic Regression
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Linear classification, e.g. Logistic Regression
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Nonlinear expansion of attributes
■ We can expand the attributes non-linearly ( )×x1 x2
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Nonlinear expansion of attributes
■ We can expand the attributes non-linearly ( )×x1 x2
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Nonlinear expansion of attributes
■ We can expand further ( ), , , ,x1 x2 x1x2 x2

1 x2
2
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Nonlinear expansion of attributes
■ We can expand further ( ), , , , , ,x1 x2 x1x2 x2

1 x2
2 x3

1 x3
2
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Nonlinear expansion of attributes
■ With logistic regression this is not practical
• We have to do it by hand

■ Support Vector Machines do this automatically

■ Where  is a vector of coefficients,  is the kernel
function for some non-linear expansion  of our original data

− K( , )arg max
α⃗ 

∑
n=1

N

αn

1

2
∑
n=1

N

∑
m=1

N

αnαmynym x⃗ n x⃗ m

α⃗  K( , )x⃗ n x⃗ m
ϕ
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Nonlinear expansion of attributes
■ Example, using a polynomial kernel: = ( + 1Kϕ( )x ⃗ n x⃗ T z ⃗  )2
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Nonlinear expansion of attributes
■ Example, using a polynomial kernel: = ( + 1Kϕ( )x ⃗ n x⃗ T z ⃗  )3
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No free lunchNo free lunchNo free lunchNo free lunchNo free lunchNo free lunchNo free lunchNo free lunchNo free lunch
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No-free-lunch theorems (Wolpert and MacReady, 1997)
"[I]f an algorithm performs well on a certain class of problems then it necessarily pays for
that with degraded performance on the set of all remaining problems."

Important for two reasons:
■ No single model can be best at all tasks:
• We need to create different models optimized for different tasks

■ Overfitting
• The hypothesis chosen may be so adjusted to the training data it does not

generalize
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Nonlinearity is important for capturing patterns in data
■ But can lead to loss of generalization

"With great power comes great overfitting"
Benjamin Parker (attributed)
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Occurs when model adjusts to noise
■ Some details are informative about patterns in the population
■ Some are particular to the data sample and do not generalize
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Occurs when model adjusts to noise
■ Measuring overfitting:
• Evaluate outside the training set

• Validation set: used for selecting best model, hyperparameters, ...
• Test set: used to obtain unbiased estimate of the true error

■ Preventing overfitting:
• Adjust training (regularization)
• Select adequate model
• Use more data (allows more powerful models)
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What do we have in "classical" machine learning?
■ Many algorithms do nonlinear transformations
■ Many different models
• Great diversity, with different algorithms

■ The right features
• Feature extraction usually done by the user

■ Preventing overfitting
• Method depends on the algorithm

■ Ability to use large amounts of data
• Some do, some don't
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Deep learning helps solve these problems
■ Nonlinear transformations, stacked
■ Many different models
• but all built from artificial neurons

■ The right features
• can be done automatically determined by the model during training

■ Preventing overfitting
• Many ways to regularize

■ Ability to use large amounts of data
• Yes!
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Summary
■ Overview of the course
■ AI and Machine learning
■ Nonlinear transformations and Overfitting
■ The promise of deep learning
Further reading:
■ Skansi, Introduction to Deep Learning, Chapter 1
■ Goodfellow et al, Deep Learning, Chapters 1 and 5




